Abstract

SummaryCloud manufacturing promotes the transformation of intelligence for the traditional manufacturing mode. In a cloud manufacturing environment, the task scheduling plays an important role. However, as the number of problem instances increases, the solution quality and computation time always go against. Existing task scheduling algorithms can get local optimal solutions with the high computational cost, especially for large problem instances. To tackle this problem, a task scheduling algorithm based on a deep reinforcement learning architecture (RLTS) is proposed to dynamically schedule tasks with precedence relationship to cloud servers to minimize the task execution time. Meanwhile, the Deep‐Q‐Network, as a kind of deep reinforcement learning algorithms, is employed to consider the problem of complexity and high dimension. In the simulation, the performance of the proposed algorithm is compared with other four heuristic algorithms. The experimental results show that RLTS can be effective to solve the task scheduling in a cloud manufacturing environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.