Abstract
Improving energy efficiency is an important goal of computer system design. This article focuses on a general model of task-parallel applications under quality-of-service requirements on the completion time. Our technique, called Task-RM , exploits the variance in task execution-times and imbalance between tasks to allocate just enough resources in terms of voltage-frequency and core-allocation so that the application completes before the deadline. Moreover, we provide a solution that can harness additional energy savings with the availability of additional processors. We observe that, for the proposed run-time resource manager to allocate resources, it requires specification of the soft deadlines to the tasks. This is accomplished by analyzing the energy-saving scenarios offline and by providing Task-RM with the performance requirements of the tasks. The evaluation shows an energy saving of 33% compared to race-to-idle and 22% compared to dynamic slack allocation (DSA) with an overhead of less than 1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Architecture and Code Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.