Abstract

Functional MRI (fMRI) is commonly used for understanding brain organization and connectivity abnormalities in neurological conditions, and in particular in multiple sclerosis (MS). However, head motion degrades fMRI data quality and influences all image-derived metrics. Persistent controversies regarding the best correction strategy motivates a systematic comparison, including methods such as scrubbing and volume interpolation, to find optimal correction models, particularly in studies with clinical populations prone to characterize by high motion. Moreover, strategies for correction of motion effects gain more relevance in task-based designs, which are less explored compared to resting-state, have usually lower sample sizes, and may have a crucial role in describing the functioning of the brain and highlighting specific connectivity changes. We acquired fMRI data from 17 early MS patients and 14 matched healthy controls (HC) during performance of a visual task, characterized motion in both groups, and quantitatively compared the most used and easy to implement methods for correction of motion effects. We compared task-activation metrics obtained from: (i) models containing 6 or 24 motion parameters (MPs) as nuisance regressors; (ii) models containing nuisance regressors for 6 or 24 MPs and motion outliers (scrubbing) detected with Framewise Displacement or Derivative or root mean square VARiance over voxelS; and (iii) models with 6 or 24 MPs and motion outliers corrected through volume interpolation. To our knowledge, volume interpolation has not been systematically compared with scrubbing, nor investigated in task fMRI clinical studies in MS. No differences in motion were found between groups, suggesting that recently diagnosed MS patients may not present problematic motion. In general, models with 6 MPs perform better than models with 24 MPs, suggesting the 6 MPs as the best trade-off between correction of motion effects and preservation of valuable information. Parsimonious models with 6 MPs and volume interpolation were the best combination for correcting motion in both groups, surpassing the scrubbing methods. A joint analysis regardless of the group further highlighted the value of volume interpolation. Volume interpolation of motion outliers is an easy to implement technique, which may be an alternative to other methods and may improve the accuracy of fMRI analyses, crucially in clinical studies in MS and other neurological populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.