Abstract

Borates provide an excellent platform for investigating the optical nonlinearity and linearity of crystals as photoelectric functional materials. In our work, borate derivatives with isolated [B3O3] six-membered rings as structural features are the preferred system due to their simple functional units and excellent properties. Herein, by utilizing the target-oriented synthesis, a series of borate derivatives, A2[B3O3F4(OH)] (A= NH4, Rb, Cs) (ABOFH), K2.3Cs0.7B3O3F6 (KCsBOF), and Cs3[B3O3(OH)3]Cl3 (CsBOHCl), with novel heteroanionic groups containing [BOxF4-x] (x = 0-3) and/or [BO2(OH)] units were obtained. ABOFH, KCsBOF, and CsBOHCl construct different two-dimensional pesudolayers featuring [B3O3F4(OH)], [B3O3F6], and [B3O3(OH)3] units, respectively. Also, the optical properties and the arrangement information of these anionic groups were studied. Among the total five compounds, (NH4)2[B3O3F4(OH)] and Cs3[B3O3(OH)3]Cl3 with enlarged birefringence and sufficient band gaps were screened out as promising birefringent crystals due to the optimally aligned configuration of birefringence-active heteroanionic units. The successful results of target-oriented synthesis indicate a more profound conclusion that the borate system now has more diversified structural chemistry, and an effective strategy was proposed to modify the arrangement and species of anionic units to optimize the performance of optical crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.