Abstract

Salmonella serovars are leading causes of gastrointestinal disease and have become increasingly resistant to fluoroquinolone and cephalosporin antibiotics. Overcoming this healthcare crisis requires new approaches in antibiotic discovery and the identification of unique bacterial targets. In this work, we describe a chemical genomics approach to identify inhibitors of Salmonella virulence. From a cell-based, promoter reporter screen of ∼50,000 small molecules, we identified dephostatin as a non-antibiotic compound that inhibits intracellular virulence factors and polymyxin resistance genes. Dephostatin disrupts signaling through both the SsrA-SsrB and PmrB-PmrA two-component regulatory systems and restores sensitivity to the last-resort antibiotic, colistin. Cell-based experiments and mouse models of infection demonstrate that dephostatin attenuates Salmonella virulence invitro and invivo, suggesting that perturbing regulatory networks is a promising strategy for the development of anti-infectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.