Abstract

Tumor necrosis factor-α (TNFα) inhibitors are widely used in treating autoimmune diseases like rheumatoid arthritis (RA). These inhibitors can presumably alleviate RA symptoms by blocking TNFα-TNF receptor 1 (TNFR1)-mediated pro-inflammatory signaling pathways. However, the strategy also interrupts the survival and reproduction functions conducted by TNFα-TNFR2 interaction and causes side effects. Thus, it is urgently needed to develop inhibitors that can selectively block TNFα-TNFR1 but not TNFα-TNFR2. Here, nucleic acid-based aptamers against TNFR1 are explored as potential anti-RA candidates. Through the systematic evolution of ligands by exponential enrichment (SELEX), two types of TNFR1-targeting aptamers were obtained, and their KD values are approximately 100-300 nM. In silico analysis shows that the binding interface of aptamer-TNFR1 highly overlapped with natural TNFα-TNFR1 binding. On the cellular level, the aptamers can exert TNFα inhibitory activity by binding to TNFR1. The anti-inflammatory efficiencies of aptamers were assessed and further enhanced using divalent aptamer constructs. These findings provide a new strategy to block TNFR1 for potential anti-RA treatment precisely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.