Abstract
Stem cells are commonly defined as undifferentiated cells capable of self-renewing and giving rise to a large number of differentiated progeny. It is becoming increasingly apparent that there exist cancer stem cells (CSCs) from which the cells of any given malignancy arise, whereby only a few cells out of a population of cancer cells are able to initiate tumor formation. These CSCs, like their normal counterparts, are characterized by self-renewal and the ability to "differentiate" into all of the cell types in the original tumor. Current chemotherapeutic strategies involve using non-specific cytotoxic agents that target rapidly cycling cells. Although this may reduce disease burden in many cases, these therapies may miss the rare, self-renewing population that truly gives rise to the malignancy (the CSC). This review will focus on the recent discovery of stem cell-like cells in human brain tumors, putative "brain cancer stem cells," which exhibit the properties of self-renewal and the ability to recapitulate the original tumor heterogeneity. Dissecting the molecular mechanisms that underlie the ability of these cells to self-renew and maintain quiescence may allow the development of novel therapeutic strategies that will allow for more efficacious and less toxic therapies for these devastating malignancies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.