Abstract
Antisense oligonucleotides (ASOs) hold promise for gene-specific knockdown in diseases that involve RNA or protein gain-of-function. In the hereditary degenerative disease myotonic dystrophy type 1 (DM1), transcripts from the mutant allele contain an expanded CUG repeat1–3 and are retained in the nucleus4, 5. The mutant RNA exerts a toxic gain-of-function6, making it an appropriate target for therapeutic ASOs. However, despite improvements in ASO chemistry and design, systemic use of ASOs is limited because uptake in many tissues, including skeletal and cardiac muscle, is not sufficient to silence target mRNAs7, 8. Here we show that nuclear-retained transcripts containing expanded CUG (CUGexp) repeats are extraordinarily sensitive to antisense silencing. In a transgenic mouse model of DM1, systemic administration of ASOs caused a rapid knockdown of CUGexp RNA in skeletal muscle, correcting the physiological, histopathologic, and transcriptomic features of the disease. The effect was sustained for up to one year after treatment was discontinued. Systemically administered ASOs were also effective for muscle knockdown of Malat-1, a long noncoding RNA (lncRNA) that is retained in the nucleus9. These results provide a general strategy to correct RNA gain-of-function and modulate the expression of expanded repeats, lncRNAs, and other transcripts with prolonged nuclear residence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.