Abstract

A major limitation in biopharmaceutical development is selectively targeting drugs to diseased tissues. Growth factors and viruses have solved this problem by targeting tissue-specific cell-surface heparan sulfates. Neuregulin (NRG), a growth factor important in both nervous system development and cancer, has a unique heparin-binding domain (HBD) that targets to cell surfaces expressing its HER2/3/4 receptors (Esper, R. M., Pankonin, M. S., and Loeb, J. A. (2006) Brain Res. Rev. 51, 161-175). We have harnessed this natural targeting ability of NRG by fusing the HBD of NRG to soluble HER4. This fusion protein retains high affinity heparin binding to heparin and to cells that express heparan sulfates resulting in a more potent NRG antagonist. In vivo, it is targeted to peripheral nerve segments where it blocks the activity of NRG as a Schwann cell survival factor. The fusion protein also efficiently blocks autocrine and paracrine signaling and reduces the proliferation of MCF10CA1 breast cancer cells. These findings demonstrate the utility of the HBD of NRG in biopharmaceutical targeting and provide a new way to block HER signaling in cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.