Abstract
Cervical cancer (CC) is a prevalent malignant tumor in the female reproductive system, with rising incidence rates among younger women posing a significant public health challenge. Human papillomavirus (HPV) infection is the primary cause, driving carcinogenesis by promoting abnormal proliferation of tumor cells. Ferroptosis is a form of regulated necrosis that is caused by an iron-dependent accumulation of lipid peroxides with rupture of the plasma membrane. Targeting ferroptosis-related molecules and pathways can selectively induce cervical cancer cell death, while alterations in the expression of ferroptosis-related genes provide promising biomarkers for prognostic assessment. Advances in research on biomarkers and molecular targets are improving predictions of therapeutic outcomes, overcoming drug resistance, and optimizing immunotherapy strategies, thereby opening new avenues for precision medicine. This review focuses on the molecular mechanisms underlying ferroptosis in cervical cancer, discusses its potential applications in early diagnosis and prognosis evaluation, and summarizes the latest advancements in targeted therapy, aiming to provide a novel perspective for the clinical management of cervical cancer.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have