Abstract

Drug resistance remains a major obstacle in cancer treatment, leading to treatment failures and high mortality rates. Despite advancements in therapies, overcoming resistance requires a deeper understanding of its mechanisms. This review highlights CDK2's pivotal role in both intrinsic and acquired resistance, and its potential as a therapeutic target. Cyclin E upregulation, which partners with CDK2, is linked to poor prognosis and resistance across various cancers. Specifically, amplifications of CCNE1/CCNE2 are associated with resistance to targeted therapies, immunotherapy, endocrine therapies and chemo/radiotherapy. Given CDK2's involvement in resistance mechanisms, investigating its role presents promising opportunities for developing novel strategies to combat resistance and improve treatment outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.