Abstract

BackgroundAmong the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics. Right-left lung aeration asymmetry and poorly recruitable lungs with increased recruitability with alternating body position between supine and prone have been reported. However, real-time effects of changing body position and PEEP on regional overdistension and collapse, in individual patients, remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP and body positioning in order to reduce the mechanisms of ventilator-induced lung injury: collapse and overdistension.MethodsWe here report a series of five consecutive mechanically ventilated patients with COVID-19-associated ARDS in which sixteen decremental PEEP titrations were performed in the first days of mechanical ventilation (8 titration pairs: supine position immediately followed by 30° targeted lateral position). The choice of lateral tilt was based on X-Ray. This targeted lateral position strategy was defined by selecting the less aerated lung to be positioned up and the more aerated lung to be positioned down. For each PEEP level, global and regional collapse and overdistension maps and percentages were measured by electrical impedance tomography. Additionally, we present the incidence of lateral asymmetry in a cohort of forty-four patients.ResultsThe targeted lateral position strategy resulted in significantly smaller amounts of overdistension and collapse when compared with the supine one: less collapse along the PEEP titration was found within the left lung in targeted lateral (P = 0.014); and less overdistension along the PEEP titration was found within the right lung in targeted lateral (P = 0.005). Regarding collapse within the right lung and overdistension within the left lung: no differences were found for position. In the cohort of forty-four patients, ventilation inequality of > 65/35% was observed in 15% of cases.ConclusionsTargeted lateral positioning with bedside personalized PEEP provided a selective attenuation of overdistension and collapse in mechanically ventilated patients with COVID-19-associated ARDS and right-left lung aeration/ventilation asymmetry.Trial registrationTrial registration number: NCT04460859

Highlights

  • Among the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics

  • In a large cohort study with critically ill patients with COVID-19 referred for intensive care unit (ICU) admission [2], positive end-expiratory pressure (PEEP) levels were higher than those reported for the management of moderateto-severe ARDS in the pre–COVID-19 era; and, along with high fraction of inspired oxygen (­Fraction of inspired oxygen (FIO2)) and low partial pressure of arterial oxygen ratio ­(PaO2/FIO2) at ICU admission, were an independent factor associated with high mortality

  • Sixteen ­PEEPEIT-titration were performed during the first days of mechanical ventilation in five consecutive patients with COVID-19-associated ARDS in supine immediately followed by targeted lateral position

Read more

Summary

Introduction

Among the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics. When there is right-left lung heterogeneity of collapse and overdistension, as in many patients with COVID-19-associated ARDS, a targeted lateral positioning strategy is conceivable: by one-sided lateral position, the lung with more collapsed units in supine position can be positioned gravity-nondependent (mostly) and, the lung with more overdistended units in supine position can be positioned gravity-dependent. Such targeted lateral position, by which PL becomes larger in the nondependent units and smaller in the dependent ones, may afford simultaneous regional/selective recruitment and relief of overdistension effects

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.