Abstract
Enteric viscerofugal neurons are mechanosensory interneurons that form the afferent limb of intestino-intestinal reflexes involving prevertebral sympathetic neurons. Fast synaptic inputs to viscerofugal neurons arise from other enteric neurons, but their sources are unknown. We aimed to describe the origins of synaptic inputs to viscerofugal neurons by mapping the locations of their cell bodies within the myenteric plexus. Viscerofugal neuron somata were retrogradely traced with 1,1′-didodecyl-3,3,3′,3′-tetramethyl indocarbocyanine perchlorate (DiI) from colonic nerve trunks and impaled with microelectrodes, in longitudinal muscle/myenteric plexus preparations of the guinea-pig distal colon (39 impalements, n=14). Thirty-eight viscerofugal neurons were uni-axonal and had the electrophysiological characteristics of myenteric S-neurons; one neuron was multipolar with AH-neuron electrophysiological characteristics. Depolarizing current pulses evoked either single- or multiple action potentials in viscerofugal neurons (range 1–25 spikes, 500ms, 100–900pA, 21 cells). Electrical stimulation of internodal strands circumferential to viscerofugal neurons evoked fast excitatory postsynaptic potentials (EPSPs) in 19/24 cells. Focal pressure-ejection of the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP, 10μm) directly onto viscerofugal nerve cell bodies evoked large depolarizations and action potentials (23±10mV, latency 350±230ms, 21/22 cells). DMPP was then focally applied to multiple sites, up to 3mm from the recorded viscerofugal neuron, to activate other myenteric S-neurons. In a few sites in myenteric ganglia, DMPP evoked repeatable fast EPSPs in viscerofugal neurons (latency 300±316ms, 38/394 sites, 10 cells). The cellular sources of synaptic inputs to viscerofugal neurons were located both orally and aborally (19 oral, 19 aboral), but the amplitude of oral inputs was consistently greater than aboral inputs (13.1±4.3mV vs. 10.1±4.8mV, respectively, p<0.05, paired t-test, n=6). Most impaled viscerofugal neurons were nitric oxide synthase (NOS) immunoreactive (20/27 cells tested). Thus, the synaptic connections onto viscerofugal neurons within the myenteric plexus suggest that multiple enteric neural pathways feed into intestino-intestinal reflexes, involving sympathetic prevertebral ganglia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.