Abstract

The evidence that androgen blockade-resistant prostate cancer, termed castration resistant, remains androgen receptor (AR) dependent is compelling. AR is re-activated through multiple mechanisms including expression of constitutively active splice variants that lack hormone binding domains (HBDs). This highlights the need to develop therapies that target regions other than the HBD. Because the p160 coactivators interact most strongly with the amino-terminus of AR, we examined the consequences of disrupting this interaction. We identified two overlapping SRC-1 peptides that interact with AR, but not with progesterone receptor. These peptides reduce AR and AR variant AR-V7 dependent induction of an AR responsive reporter. Using mammalian two hybrid assays, we found that the peptides interrupt the AR/SRC-1, AR/SRC-2 and AR N/C interactions, but not SRC-1/CARM-1 interactions. Consistent with the SRC-1 dependence of induced, but not repressed genes, in LNCaP cells, the peptides inhibited hormone dependent induction of endogenous target genes including PSA and TMPRSS2, but did not block AR dependent repression of UGT2B17 or inhibit vitamin D receptor activity. Simultaneous detection of SRC-1 peptides and PSA by double immunofluorescence in transfected LNCaP cells clearly demonstrated a strong reduction in PSA levels in cells expressing the peptides. The peptides also inhibited the AR dependent expression of PSA in castration resistant C4-2 cells. Moreover they inhibited androgen dependent proliferation of LNCaP cells and proliferation of C4-2 cells in androgen depleted medium without affecting AR negative PC-3 cells. Thus, the p160 coactivator binding site is a novel potential therapeutic target to inhibit AR activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.