Abstract

Objective(s): The central role of molecular imaging modalities in cancer management is an undeniable fact that could help to diagnose cancer tumors in early stages. The main aim of this study is to prepare a novel targeted molecular imaging nanoprobe of CD24-PEGylated Au NPs to improve the ability of Computed tomography scanning (CT scan) outputs for both in vitro and in vivo detection of breast cancer (4T1) cells. Materials and methods: Gold nanoparticles (Au NPs) were synthesized and coated with polyethylene glycol (PEG) chains in order to improve the stability of the Au NPs and to provide bio modification points for antibody immobilization. The synthesized nanoprobe was used for both in vitro and in vivo targeted CT imaging breast cancer cells (4T1) and the xenograft tumor model. Results: Findings showed that the attenuation coefficient of 4T1 cells that were targeted by CD24-PEGylated Au NPs is calculated to be over two times higher than the untargeted 4T1 cells (15 HU vs 39 HU, respectively). Indeed, the results clearly reveal that the developed CD24-PEGylated Au NPs showed the tumor CT enhancement was higher than that of Omnipaqe which used as control. Also, the CT number values of the tumor area at different time points gradually increased after 60 min post injection and was significantly higher than before injection. Conclusions: Results showed the introduced CT imaging nanoprobe (Au NPs-PEGylated) could be useful for CT imaging of breast tumors under in vivo condition. Overall, it is concluded that Au NPs-PEGylated contrast media is able to detect breast cancer (4T1) cells and is more effective compared with other casual methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.