Abstract

Aqueous zinc ion battery is a potential alternative for a stationary energy storage system owing to the inherent properties of the Zn anode. However, the Zn anode suffers from serious Zn dendrite due to the uneven Zn plating. Thus, inspired by the nano-drug delivery to the target site of the tumor cell, it would be a promising strategy to introduce targeted delivery of zinc ion in the electrolyte for even Zn plating. Passive targeted transport plays an important role in nano-drug delivery, which presents the nano-drug would be released by the nano-drug carrier based on polymer to the particular target site. As a proof-of-concept, a pseudopolyrotaxane conducting the nano-drug carrier applied in targeted cancer therapy is employed as the gel polymer electrolyte (GPE) for long-life Zn anodes. The pseudopolyrotaxane is formed by the self-assembling of α-cyclodextrin (CD) and poly(ethylene oxide), where the zinc ion can be absorbed and delivered to the target site of the Zn anode benefiting from the hydrogen-bond. Impressively, even Zn plating can be induced by the hydroxyl groups of CD to inhibit Zn dendrite. Moreover, the hydrogen evolution reaction is suppressed by the GPE. Less produced H2 is detected in the GPE, which is demonstrated by the online mass spectrometry. Thus, the Zn||Zn symmetrical cell based on the GPE exhibits a cycling life of 1370 h. Compared to the one based on aqueous electrolyte, Zn||MnO2 battery based on the GPE shows a higher capacity retention. This work is expected to avail the development of the aqueous zinc ion battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.