Abstract

Liquid Chromatography/Mass Spectrometry (LC/MS)-based proteomics for absolute protein quantification has been increasingly utilized in both basic and clinical research. There is a great need to overcome some major hurdles of current absolute protein quantification methods, such as significant inter-assay variability and the high cost associated with the preparation of purified stable-isotope-labeled peptide/protein standards. We developed a novel targeted absolute protein quantification method, named TAQSI, utilizing full-length isotope-labeled protein internal standards generated from SILAC (stable isotope labeling by amino acid in cell culture) and unlabeled full-length protein calibrators. This approach was applied to absolute quantification of carboxylesterase 1 (CES1), the primary human hepatic hydrolase, in a large set of human liver samples. Absolute CES1 quantities were derived from the standard calibration curves established from unlabeled CES1 protein calibrators and the isotope-labeled CES1 internal standards obtained from SILAC HepG2 cells. The TAQSI assay was found to be accurate, precise, reproducible, and cost-effective. Importantly, protein quantification was not affected by various protein extraction and digestion protocols, and measurement errors associated with nonsynonymous variants can be readily identified and avoided. Furthermore, the TAQSI approach significantly simplifies the procedure of identifying the best performance surrogate peptides. The TAQSI assay can be widely used for targeted absolute protein quantification in various biomedical research and clinical practice settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.