Abstract

Despite high classification accuracies (~95%) of myoelectric control systems based on pattern recognition, how well offline measures translate to real-time closed-loop control is unclear. Recently, a real-time virtual test analyzed how well subjects completed arm motions using a multiple-degree of freedom (DOF) classifier. Although this test provided real-time performance metrics, the required task was oversimplified: motion speeds were normalized and unintended movements were ignored. We included these considerations in a new, more challenging virtual test called the Target Achievement Control Test (TAC Test). Five subjects with transradial amputation attempted to move a virtual arm into a target posture using myoelectric pattern recognition, performing the test with various classifier (1- vs 3-DOF) and task complexities (one vs three required motions per posture). We found no significant difference in classification accuracy between the 1- and 3-DOF classifiers (97.2% +/- 2.0% and 94.1% +/- 3.1%, respectively; p = 0.14). Subjects completed 31% fewer trials in significantly more time using the 3-DOF classifier and took 3.6 +/- 0.8 times longer to reach a three-motion posture compared with a one-motion posture. These results highlight the need for closed-loop performance measures and demonstrate that the TAC Test is a useful and more challenging tool to test real-time pattern-recognition performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.