Abstract

AbstractMethods to discretize the Hamiltonian of a topological insulator or topological superconductor, without giving up on the topological protection of the massless excitations (respectively, Dirac fermions or Majorana fermions) are reviewed. The method of tangent fermions, pioneered by Richard Stacey, is singled out as being uniquely suited for this purpose. Tangent fermions propagate on a dimensional space‐time lattice with a tangent dispersion: in dimensionless units. They avoid the fermion doubling lattice artefact that will spoil the topological protection, while preserving the fundamental symmetries of the Dirac Hamiltonian. Although the discretized Hamiltonian is nonlocal, as required by the fermion‐doubling no‐go theorem, it is possible to transform the wave equation into a generalized eigenproblem that is local in space and time. Applications that are discussed include Klein tunneling of Dirac fermions through a potential barrier, the absence of localization by disorder, the anomalous quantum Hall effect in a magnetic field, and the thermal metal of Majorana fermions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.