Abstract

Gastroesophageal resuscitative occlusion of the aorta (GROA) has been shown effective in creating zone II aortic occlusion capable of temporarily improving survival in animal models of lethal noncompressible torso hemorrhage. In this study, tandem application of GROA transitioning to resuscitative endovascular balloon occlusion of the aorta (REBOA) is explored to demonstrate feasibility as a potential point-of-injury bridge to more advanced care, using a swine model of lethal abdominal hemorrhage. Swine (n = 19) were anesthetized, instrumented, and subjected to a combination of controlled and uncontrolled hemorrhage from a grade-V liver laceration. Animals were designated as intervention (n = 9; GROA to REBOA) or control (n = 10), for 60 minutes. Following intervention, devices were deactivated, and animals received blood and crystalloid resuscitation. Animals were monitored for 4 hours. Injury resulted in onset of class IV shock in all animals with a mean arterial pressure (SD) of 24.5 (4.11) mm Hg at the start of intervention. Nine of 10 controls died during the intervention period with a median (interquartile) survival time of 8.5 (9.25) minutes. All animals receiving the intervention survived both the 60-minute intervention period demonstrating a significant survival improvement ( p = 0.0007). Transition from GROA to REBOA was successful in all animals with a transition time ranging from 30 to 90 seconds. Mean arterial pressure significantly improved in animals receiving GROA to REBOA for the duration of intervention, regardless of the method of aortic occlusion, with a range of 70.9 (16.04) mm Hg to 101.1 (15.3) mm Hg. Additional hemodynamics, metrics of shock, and oxygenation remained stable during intervention. Less invasive technologies such as GROA may present an opportunity to control noncompressible torso hemorrhage more rapidly, with a subsequent transition to more advanced care such as REBOA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.