Abstract

GABAergic synapses likely contain multiple GABAA receptor subtypes, making postsynaptic currents difficult to dissect. However, even in heterologous expression systems, analysis of receptors composed of alpha, beta, and gamma subunits can be confounded by receptors expressed from alpha and beta subunits alone. To produce recombinant GABAA receptors containing fixed subunit stoichiometry, we coexpressed individual subunits with a "tandem" alpha1 subunit linked to a beta2 subunit. Cotransfection of the gamma2 subunit with alphabeta-tandem subunits in human embryonic kidney 293 cells produced currents that were similar in their macroscopic kinetics, single-channel amplitudes, and pharmacology to overexpression of the gamma subunit with nonlinked alpha1 and beta2 subunits. Similarly, expression of alpha subunits together with alphabeta-tandem subunits produced receptors having physiological and pharmacological characteristics that closely matched cotransfection of alpha with beta subunits. In this first description of tandem GABAA subunits measured with patch-clamp and rapid agonist application techniques, we conclude that incorporation of alphabeta-tandem subunits can be used to fix stoichiometry and to establish the intrinsic kinetic properties of alpha1beta2 and alpha1beta2gamma2 receptors. We used this method to test whether the accessory protein GABAA receptor-associated protein (GABARAP) alters GABAA receptor properties directly or influences subunit composition. In recombinant receptors with fixed stoichiometry, coexpression of GABARAP-enhanced green fluorescent protein (EGFP) fusion protein had no effect on desensitization, deactivation, or diazepam potentiation of GABA-mediated currents. However, in alpha1beta2gamma2S transfections in which stoichiometry was not fixed, GABARAP-EGFP altered desensitization, deactivation, and diazepam potentiation of GABA-mediated currents. The data suggest that GABARAP does not alter receptor kinetics directly but by facilitating surface expression of alphabetagamma receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.