Abstract

In this work we present a novel tandem solar cell concept that is based on enhanced below band gap infrared absorption. The solar cell structure is based on silicon and infrared activated Black Silicon. Infrared active Black Silicon is produced by exposing silicon to fs-laser pulses. It features an enhanced IR absorption, when processed under a sulfur-containing atmosphere. Then sulfur is incorporated into the silicon lattice during laser processing providing energy states in the band gap. This silicon based tandem cell thus absorbs light with wavelengths beyond 1.1μm. This can potentially increase the overall efficiency. In this paper we present the first experimental realization of this concept. We use a standard aluminium-back-surface-field (Al-BSF) silicon solar cell and implement a Black Silicon solar cell on its rear side for enhanced IR absorption. Current and voltage measurements show the feasibility of our concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.