Abstract

Virtual reality devices featuring diffractive grating components have emerged as hotspots in the field of near-to-eye displays. The core aim of our work is to streamline the intricacies involved in devising the highly efficient slanted waveguide grating using the deep-learning-driven inverse design technique. We propose and establish a tandem neural network (TNN) comprising a generative flow-based invertible neural network and a fully connected neural network. The proposed TNN can automatically optimize the coupling efficiencies of the proposed grating at multi-wavelengths, including red, green, and blue beams at incident angles in the range of 0°-15°. The efficiency indicators manifest in the peak transmittance, average transmittance, and illuminance uniformity, reaching approximately 100%, 92%, and 98%, respectively. Additionally, the structural parameters of the grating can be deduced inversely based on the indicators within a short duration of hundreds of milliseconds to seconds using the TNN. The implementation of the inverse-engineered grating is anticipated to serve as a paradigm for simplifying and expediting the development of diverse types of waveguide gratings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.