Abstract

Nanobodies, referred to the binding domain of the heavy-chain-only antibodies, are the smallest antigen recognition unit. The molecular weight of monomeric nanobodies is about one-tenth of the conventional antibodies. The small size of nanobodies facilitates genetic manipulation and recombinant expression. This study aimed to investigate the effects of nanobody multivalency on the binding capacity of affinity resin. The nanobody (namely AFV), which binds to the fragment crystallizable (Fc) region of immunoglobulin G (IgG), was fused to the N-terminal of HaloTag in the form of monomeric (H-AFV), dimer (H-diAFV), trimer (H-triAFV), and tetramer (H-tetAFV). The fusion proteins were solubly expressed in Escherichia coli yielding at least 9.9 mg L−1. The biolayer interferometry confirmed an increment of avidity as the increase of AFV valences. The four recombinant proteins in crude cell lysate were site-specifically immobilized onto the Halo ligand resin via the self-labeling HaloTag, respectively. The generated affinity resins were able to isolate high purity IgG from mouse plasma. The highest improvement of the static binding capacity was achieved 73.7% by the H-diAFV resin other than the H-triAFV or H-tetAFV, as compared to the H-AFV resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.