Abstract
Current nonequilibrium MonteCarlo methods suffer from a dynamical sign problem that makes simulating real-time dynamics for long times exponentially hard. We propose a new "inchworm algorithm," based on iteratively reusing information obtained in previous steps to extend the propagation to longer times. The algorithm largely overcomes the dynamical sign problem, changing the scaling from exponential to quadratic. We use the method to solve the Anderson impurity model in the Kondo and mixed valence regimes, obtaining results both for quenches and for spin dynamics in the presence of an oscillatory magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.