Abstract

Phosphorus mononitride (PN) only has a fleeting existence on Earth, and molecular precursors for the release of this molecule under mild conditions in solution have remained elusive. Here we report the synthesis of an anthracene-based precursor-an anthracene moiety featuring an azidophosphine bridge across its central ring-that dissociates into dinitrogen, anthracene and P≡N in solution with a first-order half-life of roughly 30 min at room temperature. Heated under reduced pressure, this azidophosphine-anthracene precursor decomposes in an explosive fashion at around 42 °C, as demonstrated in a molecular-beam mass spectrometry study. The precursor is also shown to serve as a PN transfer reagent in the synthesis of an Fe-NP coordination complex, through ligand exchange with its Fe-N2 counterpart. The terminal N-bonded complex was found to be energetically preferred, compared to its P-bonded linkage isomer, owing to a significant covalent Fe-pnictogen bond character and an associated less unfavourable Pauli repulsion in the metal-ligand interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.