Abstract

We study two-dimensional diffusive motion of a tracer particle in restricted, crowded anisotropic geometries. The underlying medium is formed from a monolayer of elongated molecules [Cieśla J. Chem. Phys. 140, 044706 (2014)] of known concentration. Within this mesh structure, a tracer molecule is allowed to perform a Cauchy random walk with uncorrelated steps. Our analysis shows that the presence of obstacles significantly influences the motion, which in an obstacle-free space would be of a superdiffusive type. At the same time, the selfdiffusive process reveals different anomalous properties, both at the level of a single trajectory realization and after the ensemble averaging. In particular, due to obstacles, the sample mean squared displacement asymptotically grows sublinearly in time, suggesting a non-Markov character of motion. Closer inspection of survival probabilities indicates, however, that the underlying diffusion is memoryless over long time scales despite a strong inhomogeneity of the motion induced by the orientational ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.