Abstract

Long-read sequencing technologies are invaluable for determining complex RNA transcript architectures but are error-prone. Numerous 'hybrid correction' algorithms have been developed for genomic data that correct long reads by exploiting the accuracy and depth of short reads sequenced from the same sample. These algorithms are not suited for correcting more complex transcriptome sequencing data. We have created a novel reference-free algorithm called Transcript-level Aware Long-Read Correction (TALC) which models changes in RNA expression and isoform representation in a weighted De Bruijn graph to correct long reads from transcriptome studies. We show that transcript-level aware correction by TALC improves the accuracy of the whole spectrum of downstream RNA-seq applications and is thus necessary for transcriptome analyses that use long read technology. TALC is implemented in C++ and available at https://github.com/lbroseus/TALC. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.