Abstract

ABSTRACT.The opportunistic fungal pathogen Talaromyces marneffei, which is endemic across a narrow band of tropical Southeast Asia and southern China, is an intracellular pathogen that causes systemic and lethal infection through the mononuclear phagocyte system. The mechanisms by which T. marneffei successfully replicates and escapes the immune system remain unclear. To investigate the role of arginine metabolism in the escape of T. marneffei from killer macrophages, we assessed inducible nitric oxide synthase (iNOS) and arginase expression, nitric oxide (NO) production, arginase and phagocytic activity, and the killing of T. marneffei in a coculture system. Our results indicate that T. marneffei induced macrophage polarization toward the M2 phenotype and regulated the arginine metabolism pathway by prolonging infection, thereby reducing antimicrobial activity and promoting fungal survival. Moreover, inhibiting T. marneffei–induced macrophage arginase activity with Nω-hydroxy-nor-arginine restored NO synthesis and strengthened fungal killing. These findings indicate that T. marneffei affects macrophage polarization and inhibits macrophage antimicrobial function via the arginine metabolism pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.