Abstract

Let PA be Peano arithmetic with function symbols′, + and ·. The length of a proof P, denoted by lh(P), is the maximum length of threads of P (for the term ‘thread’, see [T, p. 14]). For a formula A and a natural number m, PA ⊢mA denotes the fact that there is a proof in PA of A whose length is less than or equal to m. PA ⊢ A denotes the fact that there is a proof in PA of A.G. Kreisel conjectured that the following proposition holds.“Let m be a natural number and A(a) be a formula. If for each natural number n, then PA ⊢ ∀xA(x)”.Let PA1 be the corresponding system with + and · replaced by ternary predicates and axioms saying that these predicates represent functions. Parikh [P] proved the following proposition which is obtained from Kreisel's conjecture by replacing PA by PA1.Proposition. Let A(a) be a formula in PA1and m be a natural number. Assume thatfor each natural number n. Then PA1 ⊢ ∀xA(x).The reason why Parikh's method succeeds is the fact that the only function symbol ′ in PA1 is unary. So his method fails for PA.To solve this conjecture for PA, we must make syntactical investigation into proofs in PA of formulas of the form A() with length ≤ m. Even if lengths of proofs are less than or equal to m, depths of occurrences of bound variables in induction axiom schemata or equality axiom schemata in proofs are not always bounded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.