Abstract

This study reports a post-deposition technique of engineering the mechanical properties of cantilever-like silicon nanorods by using swift heavy ion irradiation. Slanted silicon nanorods grown by glancing angle deposition technique on a patterned Si(1 0 0) substrate are irradiated by 100 MeV Ag +8 ions at a fluence of 10 14 ions cm −2. The average spring constant ( k) of the nanorods determined by force–distance spectroscopy reduces to 65.6 ± 20.8 Nm −1 post-irradiation as compared to 174.2 ± 26.5 Nm −1 for pristine nanorods. Scanning electron micrographs show bending of the Si nanorods after irradiation. Micro-Raman and high-resolution transmission electron microscope studies on pristine and irradiated Si nanorods confirm the transformation of nanocrystalline regions present in pristine nanorods to amorphous phase on irradiation. This structural transformation and bending of the nanorods are responsible for the observed changes in the mechanical properties post-irradiation. The technique offers a simpler possibility of tailoring mechanical properties of nanostructures post-deposition by ion irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.