Abstract

Organic cocrystals with unique energy-level structures are potentially a new class of materials for the development of versatile solid-state lasers. However, till now, the stimulated emission in cocrystal materials remains a big challenge possibly because of the nonradiative charge-transfer (CT) transitions. Here, for the first time, we report organic cocrystal microlasers constructed by simultaneously tailoring the energy levels and cavity structures based on the intermolecular halogen-bonding interactions. The intermolecular interactions triggered different self-assembly processes, resulting in distinct types of high-quality resonant microcavities. More importantly, the halogen-bonding interactions alleviated intermolecular CT and thus brought about a favorable four-level energy structure for the population inversion and tunable lasing in the cocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.