Abstract
Application of restructured collagen-based biomaterials is generally restricted by their poor mechanical properties, which ideally must be close to those of a tissue being repaired. Here, we present an approach to the formation of a robust biomaterial using laser-induced curing of a photosensitive star-shaped polylactide. The created collagen-based structures demonstrated an increase in the Young's modulus by more than an order of magnitude with introduction of reinforcing patterns (from 0.15 ± 0.02 MPa for the untreated collagen to 51.2 ± 5.6 MPa for the reinforced collagen). It was shown that the geometrical configuration of the created reinforcing pattern affected the scaffold's mechanical properties only in the case of a relatively high laser radiation power density, when the effect of accumulated thermomechanical stresses in the photocured regions was significant. Photo-crosslinking of polylactide did not compromise the scaffold's cytotoxicity and provided fluorescent regions in the collagen matrix, that create a potential for noninvasive monitoring of such materials' biodegradation kinetics in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.