Abstract

AbstractThe electrochemical reduction of O2 via a two‐electron reaction pathway to H2O2 provides a possibility for replacing the current anthraquinone process, enabling sustainable and decentralized H2O2 production. Here, a nitrogen‐rich few‐layered graphene (N‐FLG) with a tunable nitrogen configuration is developed for electrochemical H2O2 generation. A positive correlation between the content of pyrrolic‐N and the H2O2 selectivity is experimentally observed. The critical role of pyrrolic‐N is elucidated by the variable intermediate adsorption profiles as well as the dependent negative shifts of the pyrrolic‐N peak on X‐ray adsorption near edge structure spectra. By virtue of the optimized N doping configuration and the unique porous structure, the as‐fabricated N‐FLG electrocatalyst exhibits high selectivity toward electrochemical H2O2 synthesis as well as superior long‐term stability. To achieve high‐value products on both the anode and cathode with optimized energy efficiency, a practical device coupling electrochemical H2O2 generation and furfural oxidation is assembled, simultaneously enabling a high yield rate of H2O2 at the cathode (9.66 mol h−1 gcat−1) and 2‐furoic acid at the anode (2.076 mol m−2 h−1) under a small cell voltage of 1.8 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.