Abstract

The biomaterials that can control the active ions delivery to enhance cell activity are regarded as promising bone regenerative materials. In this study, a new approach aiming to layer-by-layer (LbL) assemble the bioavailable zinc ions in the core-shell-like silica@octacalcium phosphate (OCP) nanosphere and to analyze its efficacy on improving controlled-release was reported. Firstly, a pH-responsive electrostatic interaction was used to adsorb zinc ions on silica nanospheres with different zinc concentration, which was followed by coating silica gel layer. Then the nanospheres were LbL assembled with zinc ions and silica gel alternately until the desired multilayered nanospheres were achieved. Finally, the porous OCP shells were capped onto the outside surface of the nanospheres tailored by poly(aspartic acid) sodium molecules. The ion release tests in Tris buffers in vitro indicated that zinc release was controlled by pH and storage capacity, and silicon release was regulated by the OCP shell barrier. A temporal gradient within short times and sustained-dosage for a prolonged time toward the zinc and silicon ions could be obtained in this multilayer system. The results of this organized active ion assembly might open a promising future direction for effective delivery of trace elements in bone defect therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.