Abstract

We present a robust interferometric method to generate arbitrary vector beam modes by diffracting a Gaussian laser beam from a spatial light modulator consisting of a high-resolution reflective nematic liquid crystal display. Vector beams may have the same intensity cross-section as the more common scalar Laguerre–Gaussian (LG) or Hermite–Gaussian (HG) beams, but with a spatially modulated polarization distribution. Special cases are the radially or azimuthally polarized ‘doughnut’ modes, which have superior focusing properties and promise novel applications in many fields, such as optical trapping, spectroscopy and super-resolution microscopy. Our system allows video rate switching between vector beam modes. We demonstrate the generation of high quality Hermite–Gaussian and Laguerre–Gaussian vector beam modes of different order, of vectorial anti-vortices, and of mode mixtures with interesting non-symmetric polarization distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.