Abstract

Recently, the applications of deep eutectic solvents (DESs) as green and sustainable solvents for the solubilization of functional foods and phytophenols have dramatically risen concerning global issues on the utilization of organic solvents. Nevertheless, developing a suitable DES system for phytocomponents to enhance its solubility and bioavailability is complex and requires a sound experimental setup. Herein, we have attempted to develop DES encompassing the choline chloride (ChCl) along with oxalic acid (OA), l-glutamine (l-Glu), urea (U), and glycerol (Gro) at different ratios to elicit the solubility and bioavailability of naringin (NAR). Several DES systems were designed and tested for solubility, kinematic viscosity, and pH. Among these, DES-NAR encompassing ChCl/Gro in a 1:3 ratio exhibited the maximum solubility of NAR (232.56 ± 7.1 mg/mL) and neutral characteristic and thus considered suitable for NAR. Further, the conductor-like screening model for real solvents (COSMO-RS) has been employed to estimate the molecular and electrostatic interactions. DES-NAR was evaluated by polarized optical microscopy, Fourier-transform infrared (FTIR), differential scanning calorimetry (DSC), and 1H NMR to investigate the molecular transition and interaction. Further, diffusion and permeability studies were performed, which suggest significant improvements in DES-NAR. Likewise, the pharmacokinetic studies revealed a two times increase in the oral bioavailability of NAR in a designed DES system. Thus, the work represents a systematic and efficient development of the DES system for a potential phytocomponent considering the biosafety impact, which may widen the interest in pharmaceutical and food sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.