Abstract

Poly(L-lactic) acid (PLLA) has been widely employed in tissue engineering due to its mechanical properties, biodegradability and biocompatibility. The layer-by-layer (LbL) technique was here proposed as a simple method to impart bioactivity to the surface of PLLA substrates. Aminolysis treatment was applied to introduce amino groups on the surface of PLLA solvent cast films. Then, PLLA films were coated with heparin (HE)/chitosan (CH) multilayer by the LbL technique. Each functionalization step was characterized through physico-chemical and morphological analyses. Aminolysis treatment increased film surface wettability (64.8° ± 2.4° against 74.6° ± 1.3° for untreated PLLA) due to the formation of surface amino groups, which were quantified by acid orange colorimetric assay (0.05 nmol/mm2). After the deposition of 9 layers, the static contact angle varied between values close to 40° C (HE-based layer) and 60 °C (CH-based layer), showing the typical alternate trend of LbL coating. The successful HE/CH deposition was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Particularly, XPS spectra of coated samples showed the presence of nitrogen (indicative of HE and CH deposition), and sulfur (indicative of HE deposition). The amount of deposited HE was quantified by Taylor’s Blue colorimetric method: after the deposition of 19 and 20 layers the HE concentration was around 33 µg/cm2. Finally, in vitro studies performed using HaCaT immortalized human skin keratinocytes, C2C12 immortalized mouse myoblasts and human fibroblasts demonstrated that HE/CH multilayer-coated PLLA is a promising substrate for soft tissue engineering, as cell response may be modulated by changing the surface chemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.