Abstract
The overexpression of calcineurin leads to astrocyte hyperactivation, neuronal death, and inflammation, which are characteristics often associated with pathologic aging and Alzheimer's disease. In this study, we tested the hypothesis that tacrolimus, a calcineurin inhibitor, prevents age-associated microstructural atrophy, which we measured using higher-order diffusion MRI, in the middle-aged beagle brain (n = 30, male and female). We find that tacrolimus reduces hippocampal (p = 0.001) and parahippocampal (p = 0.002) neurite density index, as well as protects against an age-associated increase in the parahippocampal (p = 0.007) orientation dispersion index. Tacrolimus also protects against an age-related decrease in fractional anisotropy in the prefrontal cortex (p < 0.0001). We also show that these microstructural alterations precede cognitive decline and gross atrophy. These results support the idea that calcineurin inhibitors may have the potential to prevent aging-related pathology if administered at middle age.SIGNIFICANCE STATEMENT Hyperactive calcineurin signaling causes neuroinflammation and other neurobiological changes often associated with pathologic aging and Alzheimer's disease (AD). Controlling the expression of calcineurin before gross cognitive deficits are observable might serve as a promising avenue for preventing AD pathology. In this study, we show that the administration of the calcineurin inhibitor, tacrolimus, over 1 year prevents age- and AD-associated microstructural changes in the hippocampus, parahippocampal cortex, and prefrontal cortex of the middle-aged beagle brain, with no noticeable adverse effects. Tacrolimus is already approved by the Food and Drug Administration for use in humans to prevent solid organ transplant rejection, and our results bolster the promise of this drug to prevent AD and aging-related pathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.