Abstract

Vanadium flow batteries are among the most promising technologies for stationary energy storage applications if their cost of storage can be further decreased. Capacity fading resulting from imbalanced vanadium crossover is a key operating cost component. Herein, a new approach is reported to avoid this cost by balancing electrolyte transport with amphoteric bilayer Nafion/meta-polybenzimidazole membranes. Within this system, the anion- and cation-exchange capacity can be tuned in a straightforward manner by changing the thickness of the respective polymer layer to balance electrolyte transport for a given current density. At high current densities, a net migrative flux of vanadium directed towards the positive side is observed owing to the higher average charge of vanadium ions present at the negative side. The coulombic repulsion between the vanadium ions and the positive charges in the membrane counteracts this migrative transport and can reverse the direction of the net vanadium flux. For a technically relevant current density of 120 mA cm-2 , a PBI thickness of 3-4 μm is required to balance the vanadium crossover and to minimize capacity fading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.