Abstract

Tachykinins (TKs), substance P (SP), neurokinin A (NKA) and B (NKB) are important peptide modulators of intestinal motility in animal species studied so far, including humans. Modulation of motility by TKs can occur at various levels, since these peptides are expressed in cholinergic excitatory motor neurons projecting to both circular and longitudinal muscle, interneurons, and intramural and extramural sensory neurons. The effects of SP, NKA and NKB are preferentially mediated through the stimulation of NK1, NK2 and NK3 receptors, respectively; however, the selectivity of natural TKs for their preferred receptors is relative. In addition, SP and NKA are expressed in similar quantities in the human intestine and adequate stimuli can release similar amount of these TKs from enteric nerves. Furthermore, a single anatomical substrate can express more than one TK receptor type, so that the blockade of a single receptor type may not reveal functional effects in integrated models of motility. In isolated human small intestine and colon circular muscle strips, both NK1 and NK2 receptors mediate contractile effects. Indeed, in the human small intestine, smooth muscle electrical and motor events induced by electrical field stimulation (EFS) can involve either or both NK1 and NK2 receptors or these latter receptors predominantly, depending on the experimental conditions. In contrast, in the human colonic smooth muscle, only the NK2 receptor-mediated component of the response to EFS is prominent and some evidence would suggest that this component is the main excitatory motor mechanism at this level. Furthermore, a NK2 receptor-mediated secretory component in the human colonic mucosa has been recently demonstrated. Thus, it could be speculated that the blockade of both NK1 and NK2 receptors will be necessary to antagonise motor effects induced by exogenous administration or endogenous release of TKs in the small intestine, whereas the blockade of the NK2 receptors would be sufficient to disrupt physiological motor and, possibly, secretory activity at the colonic level. Available evidence indicates that, in healthy volunteers, the infusion of NKA (25 pmol/kg/min i.v.) stimulated small intestine motility and precipitated a series of intestinal and non-intestinal adverse events. Nepadutant (8 mg i.v.), a selective NK2 receptor antagonist, antagonised small intestine motility induced by NKA and prevented associated intestinal adverse events. In another study, the same dose of nepadutant increased colo-rectal compliance during isobaric balloon distension in healthy volunteers pretreated with a glycerol enema, disclosing a NK2 receptor-mediated component in the regulation of colonic smooth muscle tone. However, the prolonged blockade of NK2 receptors by nepadutant (16 mg i.v. b.i.d. for 8 days) did not affect bowel habits, neither in term of movements nor of stool consistency. Altogether, these results indicate that, even when there is a significant redundance in the effects of TKs and in the role of their receptors, the selective blockade of tachykinin NK2 receptors can have functional consequences on human intestinal motility and perception, but this can occur without the disruption of the physiological functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.