Abstract

The symptoms of irritable bowel syndrome (IBS) include significant abdominal pain and bloating. Current treatments are empirical and often poorly efficacious, and there is a need for the development of new and efficient analgesics aimed at IBS patients. T-type calcium channels have previously been validated as a potential target to treat certain neuropathic pain pathologies. Here we report that T-type calcium channels encoded by the Ca(V)3.2 isoform are expressed in colonic nociceptive primary afferent neurons and that they contribute to the exaggerated pain perception in a butyrate-mediated rodent model of IBS. Both the selective genetic inhibition of Ca(V)3.2 channels and pharmacological blockade with calcium channel antagonists attenuates IBS-like painful symptoms. Mechanistically, butyrate acts to promote the increased insertion of Ca(V)3.2 channels into primary sensory neuron membranes, likely via a posttranslational effect. The butyrate-mediated regulation can be recapitulated with recombinant Ca(V)3.2 channels expressed in HEK cells and may provide a convenient in vitro screening system for the identification of T-type channel blockers relevant to visceral pain. These results implicate T-type calcium channels in the pathophysiology of chronic visceral pain and suggest Ca(V)3.2 as a promising target for the development of efficient analgesics for the visceral discomfort and pain associated with IBS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.