Abstract

T-box transcription factors play a crucial role in development where they are implicated in patterning and cell fate decisions. Tbx2 and Tbx3 have also been implicated in several cancers including melanoma, and can act as antisenescence factors through their ability to repress p19(ARF) and p21(CIP1) expression. Although several target genes for T-box factors have been identified, it is unknown whether this family of proteins can bind chromatin, a property that would facilitate the epigenetic reprogramming that occurs in both development and cancer progression. Here, we show that Tbx2 has the potential to recognize mitotic chromatin in a DNA-dependent fashion, can interact specifically with the histone H3 N-terminal tail, a property shared with Tbx4, Tbx5 and Tbx6, and can also recognize nucleosomal DNA, with binding to nucleosomes being antagonized by the presence of the histone tails. Strikingly, in vivo Tbx2 co-localization with pericentric heterochromatin appears to be regulated and ectopic expression of Tbx2 leads to severe mitotic defects. Taken together our results suggest that Tbx2, and most likely other members of the T-box family, are able to target chromatin and may indicate a role for the T-box factors in epigenetic reprogramming events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.