Abstract

The effects of leptin on bone are controversial. Although in vitro studies have shown that leptin stimulates osteoblast differentiation and mineralization and inhibits osteoclastogenesis, some rodent studies have shown that leptin administered centrally might result in decreased bone formation. In the present study we have investigated the skeletal effects of supraphysiological concentrations of leptin administered sc to rats. Female Fischer rats were given leptin 100 μg/d, 200 μg/d, or saline by continuous infusion for 9 wk. Bone mineral density (BMD) was measured by dual energy x-ray absorptiometry, bone microarchitecture was analyzed by micro-computed tomography, and biomechanical properties were tested by three-point bending experiments. At the end of the study, the body weight was significantly lower in rats receiving leptin compared with controls (-10.8% and -12.0% in low- and high-dose leptin groups, respectively). The high-dose leptin group also significantly lost weight compared with baseline. The plasma leptin concentration was 14- and 33-fold increased in the low- and high-dose groups, respectively. No significant differences in femoral BMD were observed. Whole-body BMD was significantly lower in the low-dose leptin group, whereas there was no difference between the high-dose leptin group and the control. Mechanical strength and microarchitecture were similar in the high-dose and the control group. The low-dose group, however, had decreased cortical volume in the femoral metaphysis, lowered bone strength, and altered moment of inertia. In conclusion, leptin given at very high doses maintains BMD, microarchitecture, and mechanical strength in female rats, despite a significant decrease in body weight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.