Abstract
L.A. Zadeh, E.H. Mamdani, M. Mizumoto, et al., R.A. Aliev and A. Tserkovny have proposed methods for fuzzy reasoning in which antecedents and consequents involve fuzzy conditional propositions of the form “If x is A then y is B”, with A and B being fuzzy concepts (fuzzy sets). A formulation of fuzzy antecedent/consequent chains is one of the most important topics within a wide spectrum of problems in fuzzy sets in general and approximate reasoning, in particular. From the analysis of relevant research it becomes clear that for this purpose, a so-called fuzzy conditional inference rules comes as a viable alternative. In this study, we present a systemic approach toward fuzzy logic formalization for approximate reasoning. For this reason, we put together some comparative analysis of fuzzy reasoning methods in which antecedents contain a conditional proposition with fuzzy concepts and which are based on implication operators present in various types of fuzzy logic. We also show a process of a formation of the fuzzy logic regarded as an algebraic system closed under all its operations. We examine statistical characteristics of the proposed fuzzy logic. As the matter of practical interest, we construct a set of fuzzy conditional inference rules on the basis of the proposed fuzzy logic. Continuity and stability features of the formalized rules are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.