Abstract

A systematic investigation of the inclusive cross sections for single-nucleon knockout reactions from $p$-shell nuclei has been performed. A total of seven reactions were studied for projectiles with masses between $A=7$ and 10, having a wide range of nucleon separation energies. Results were obtained for a range of incident beam energies and targets. These differences were found to have a minimal impact on the deduced cross sections. Experimental results were compared to theoretical predictions based on variational Monte Carlo (VMC) nuclear structure calculations, whose radial overlap functions and neutron and proton densities were included in the reaction description. These results are compared with the conventional model, developed for heavier nuclei, that uses shell-model and Hartree-Fock structure inputs. The VMC-based calculations agreed with the experimental data for several reactions where deeply bound nucleons are removed but does not describe some of the more weakly bound nucleon removal cases with comparable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.