Abstract

We experimentally study the random telegraph noise (RTN) in nanowire transistor (NW Tr.) with various widths (W), lengths (L), and heights (H). Time components of RTN such as time to capture (τ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ) and emission (τ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> ) are independent of NW size, while threshold voltage fluctuation (ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> ) by RTN can be well fitted with 1/{L(W+2H)} <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.5</sup> corresponding to the conventional carrier number fluctuations regardless of the side surface orientation. Hot carrier injection (HCI) and negative bias temperature instability (NBTI) induced additional carrier traps leading to the increase in the number of observed RTN. Moreover, ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> is enhanced by HCI and NBTI and enhancement of ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> becomes larger in narrower W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.