Abstract
The structural, magnetic and optical characteristics of Zn1−xTMxS/Se (TM = Mn, Fe, Co, Ni and x = 6.25%) have been investigated through the full-potential linearized augmented plane wave method within the framework of density functional theory. The optimized structures have been used to calculate the ferromagnetic and the antiferromagnetic ground-state energies. The stability of the ferromagnetic phase has been confirmed from the formation and the cohesive energies. The Heisenberg model is used to elucidate the Curie temperature (Tc) of these alloys. From the band structures and density of states plots, it has been observed that TM-doped ZnS/Se alloys appear to be semiconductors and exhibit ferromagnetism. In addition, the observed ferromagnetism has also been explained in terms of direct exchange energy Δx(d), exchange splitting energy Δx(pd), crystal-field energy (Ecrys), exchange constants (N0α and N0β) and magnetic moments that shows potential spintronic applications. The optical behaviors of these alloys have been explained in terms of real and imaginary parts of the dielectric constant ε(ω), refractive index n(ω), extinction coefficient K(ω), reflectivity R(ω) and absorption coefficient σ(ω), in the energy range 0–25 eV. The calculated static limits of the band gaps and real part of the dielectric constants satisfy the Penn model. The critical limits of the imaginary part of the dielectric constants and absorption coefficients indicate that these alloys can be operated in the visible and the ultraviolet region of the electromagnetic spectrum; therefore, make them important for optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.