Abstract

Recently, the need for rapid, reliable, and low-cost drug susceptibility testing (DST) methods has increased due to the emergence of multidrug-resistant Mycobacterium tuberculosis. Colorimetric methods of DST provide results more quickly than standard culture methods and are inexpensive than molecular methods. Thus, colorimetric methods, such as the nitrate reductase assay (NRA), are being recommended. We searched Medline PubMed for reports on the NRA for DST of M. tuberculosis written in English and published within the last five years. We selected 20 reports on six major anti-TB drugs and conducted a meta-analysis using Meta-Disc software. The pooled sensitivities for isoniazid, rifampicin, streptomycin, ethambutol, ofloxacin, and kanamycin were 95.4%, 96.4%, 91.5%, 93.1%, 99.3%, and 88.4%, and the pooled specificities were 98.5%, 99.2%, 92.9%, 97.8%, 97.4%, and 99.4%, respectively. The area under the summary receiver operator curve for all drugs was 0.9723–0.9952. The time to results (TTR) for the direct and indirect NRAs was 7–28days and 6–15days, respectively. Quality assessments were conducted using the quality of diagnostic accuracy studies tool (QUADAS-2) items, and most reports showed good performance. However, ethambutol, streptomycin, and kanamycin showed relatively low sensitivity. We performed a quantitative NRA in liquid media at various inoculum concentrations. The TTR at 4.94×106, 1.67×104, and 2.27×102CFU/mL was 4, 14, and 14days, respectively. The minimum absorbance and nitrite concentration for positive samples were 0.8 and 168μM, respectively. We propose a quantitative standard to determine sample positivity to address the problems with the current standard NRA which is much less expensive than the conventional assay conducted on solid medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.