Abstract
For quantitative studies of vegetation dynamics, satellite data need to be corrected for spurious effects. In this study, we have applied several changes to an earlier advanced very high resolution radiometer (AVHRR) processing methodology (ABC3; [Remote Sens. Environ. 60 (1997) 35; J. Geophys. Res.-Atmos. 102 (1997) 29625; Can. J. Remote Sens. 23 (1997) 163]), to better represent the various physical processes causing contamination of the AVHRR measurements. These included published recent estimates of the NOAA-11 and NOAA-14 AVHRR calibration trajectories for channels 1 and 2; the best available estimates for the water vapour, aerosol and ozone amounts at the time of AVHRR data acquisition; an improved bidirectional reflectance algorithm that also takes into consideration surface topography; and an improved image screening algorithm for contaminated pixels. Unlike the previous study that compared the composite images to a single-date AVHRR image, we employed coincident TM images to approximate the AVHRR pixel field of view during the data acquisition. Compared to ABC3, the modified procedure ABC3V2 was found to improve the accuracy of AVHRR pixel reflectance estimates, both in the sensitivity (slope) of the regression and in r 2. The improvements were especially significant in AVHRR channel 1. In comparison with reference values derived from two full TM scenes, the corrected AVHRR surface reflectance estimates had average standard errors values of ±0.009 for AVHRR C1, ±0.019 for C2, and ±0.04 for NDVI; the corresponding r 2 values were 0.55, 0.80, and 0.50, respectively. The changes in ABC3V2 were not able to completely remove interannual variability for land cover types with little or no vegetation cover, which would be expected to remain stable over time, and they increased the interannual variability of mixed forest and grassland. These results are attributed to a combination of increased sensitivity to interannual dynamics on one hand, and the inability to remove all sources of noise for barren or sparsely vegetated northern land cover types on the other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.